Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse.more » « lessFree, publicly-accessible full text available July 29, 2026
- 
            This study examines biodegradability (BD) and optimum conditions for the solid-state anaerobic digestion (SS-AD) of organic solid poultry waste (organs, intestines, offal, and unprocessed meat) to maximize biomethane production. Three main parameters, substrate-to-inoculum (S/I) ratio, pH, and temperature, were evaluated for the SS-AD of organic solid poultry waste. pH was evaluated at non-adjusted pH, initially adjusted pH, and controlled pH conditions at a constant S/I ratio of 0.5 and temperature of 35 ± 1 °C. The S/I ratios were examined at (0.3, 0.5, 1, and 2) at a controlled pH of ≈7.9 and temperature of 35 ± 1 °C. The temperature was assessed at mesophilic (35 ± 1 °C) and thermophilic (55 ± 1 °C) conditions with a constant S/I ratio of 0.5 and controlled pH of ≈7.9. The results demonstrate that the highest biomethane production and BD were achieved with a controlled pH of ≈7.9 (689 ± 10 mg/L, 97.5 ± 1.4%). The initially adjusted pH (688 ± 14 mg/L, 97.3 ± 1.9%) and an S/I ratio of 0.3 (685 ± 8 mg/L, 96.8 ± 1.2%) had approximately equivalent outcomes. The thermophilic conditions yielded 78% lower biomethane yield than mesophilic conditions. The challenge of lower biomethane yield under thermophilic conditions will be resolved in future studies by determining the rate-limiting step. These observations highlight that SS-AD is a promising technology for biomethane production from solid organic poultry waste.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            The abundant availability of crop waste and forestry residues in Texas provides great potential for producing renewable diesel in the local towns of Texas. This study aims to evaluate the environmental impacts of renewable diesel use in Texas transportation and the potential of renewable diesel production in Texas. The GREET model was used to customize the life cycle pathway of renewable diesel and evaluate its environmental impacts. The models of renewable diesel produced from forestry residue and corn stover were built to calculate life cycle gas emissions of combination short-haul heavy-duty trucks fueled with renewable diesel. Life cycle GHG emissions of renewable diesel are much lower than those of low-sulfur diesel. However, with respect to renewable diesel derived from corn stover, life cycle PM10 and PM2.5 emissions were almost double those of low-sulfur diesel in 2024, and both emissions will be reduced by 37–38% in 2035. The life cycle emission trends of SOx, black carbon, and primary organic carbon are very similar to those of PM10 and PM2.5. The total cost of ownership (TCO) of heavy-duty trucks using renewable diesel produced from forestry residues or corn stover would be 10.3–14.8% higher than those consuming regular low-sulfur diesel in Texas.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract The catalytic hydrothermal liquefaction of biomass under a hydrogen atmosphere is a promising technology to produce stable biocrude oil as a sustainable alternative to petroleum crude. A series of iron‐based non‐noble mix metal‐oxide‐on‐silica catalysts were evaluated to mimic the natural transformation that may have led to the conversion of terrestrial biomass to fossilized fuels. Switchgrass powder was liquefied to a stable bio‐oil with a 71.2% yield by using FeOx/SiO2catalyst in ethanol under a 5.5 MPa hydrogen atmosphere at 210 °C. The use of Fe‐MOx/SiO2(M = V, Mn, Co, Ni, Cu and Mo) type bimetallic oxide catalysts instead of FeOx/SiO2can produce improvements in liquefaction yields by using Mn, Co, Ni, and Cu as the second metal. The highest liquefaction yield of 78.8% was observed with the Fe‐CuOx/SiO2catalyst. Liquefaction oils were formed that were composed of complex mixtures of C6‐C12 alcohols, esters, aldehydes, and phenols. The lignin products:holocellulose products ratio changed in the range 0.35 to 0.15 and the composition of oils changed significantly with the use of mixed metal oxides in place of single metal FeOx/SiO2The most effective catalyst, Fe‐CuOx/SiO2could be reused in five cycles with a small loss in liquefaction yield from 78.8% to 70.0% after four reuse cycles and after regeneration of the catalyst at 500 °C for 3 h in air.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Ensuring clean water sources is pivotal for sustainable development and the well-being of communities worldwide. This study represents a pioneering effort in water purification, exploring an innovative approach utilizing modified reduced graphene oxide (rGO) aerogels. These advanced materials promise to revolutionize environmental remediation efforts, specifically removing organic contaminants from aqueous solutions. The study investigates the exceptional adsorption properties of rGO-aerogel, enhanced with cysteamine, to understand its efficacy in addressing water pollution challenges. The characterization methods utilized encompass various analytical techniques, including FE-SEM, BET, FTIR, TGA, DSC, XPS, NMR, and elemental analysis. These analyses provide valuable insights into the material’s structural modifications and surface chemistry. The research comprehensively explores the intricacies of adsorption kinetics, equilibrium, and isothermal study to unravel the underlying mechanisms governing contaminant removal. MO and Ni2+ exhibited adsorption of 542.6 and 150.6 mg g−1, respectively, at 25 °C. Ni2+ has unveiled the highest removal at pH 5, and MO has shown high removal in a wide pH range (pH 4–7). Both contaminants have shown fast adsorption kinetic performance on an rGO-aerogel surface. This study aims to identify the synergistic effect of cysteamine and rGO in aerogel formation to remove heavy metals and organic contaminants. These findings mark a significant stride in advancing sustainable water-treatment methods and pioneering in synthesizing innovative materials with versatile applications in environmental contexts, offering a potential solution to the global water pollution crisis.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Photocatalysis, mainly using TiO2 as a catalyst, has emerged as a promising method to address the issue of wastewater treatment. This study explores the enhanced photocatalytic activity of TiO2 through the introduction of reduced graphene oxide (rGO) and cadmium sulfide (CdS) as selective metal dopants. The incorporation of rGO and CdS into the TiO2 lattice aims to optimize its photocatalytic properties, including bandgap engineering, charge carrier separation, and surface reactivity. The unique combination of CdS and rGO with TiO2 is expected to boost degradation efficiency and reduce the reliance on expensive and potentially harmful sensitizers. This experimental investigation involves the synthesis and characterization of TiO2-based photocatalysts. The photocatalytic degradation of methyl orange (MO) and methylene blue (MB) was assessed under controlled laboratory conditions, studying the influence of metal dopants on degradation kinetics and degradation efficiency. Furthermore, the synthesized photocatalyst is characterized by advanced techniques, including BET, SEM, TEM, XRD, and XPS analyses. The degraded samples were analyzed by UV-Vis spectroscopy. Insights into the photoexcitation and charge transfer processes shed light on the role of metal dopants in enhancing photocatalytic performance. The results demonstrate the potential of a TiO2-rGO-CdS-based photocatalyst in which 100% degradation was achieved within four hours for MO and six hours for MB, confirming efficient azo dye degradation. The findings contribute to understanding the fundamental principles underlying the photocatalytic process and provide valuable guidance for designing and optimizing advanced photocatalytic systems. Ultimately, this research contributes to the development of sustainable and effective technologies for removing azo dyes from various wastewaters, promoting environmental preservation and human well-being.more » « less
- 
            Among the sustainable initiatives for renewable energy technologies, anaerobic digestion (AD) is a potential contender to replace fossil fuels. The anaerobic co-digestions of goat manure (GM) with sorghum (SG), cotton gin trash (CGT), and food waste (FW) having different mixing ratios, volumes, temperatures, and additives were optimized in single and two-stage bioreactors. The biochemical methane potential assays (having different mixing ratios of double and triple substrates) were run in 250 mL serum bottles in triplicates. The best-yielding ratio was up-scaled to fabricated 2 L bioreactors. The biodegradability, biomethane recovery, and process efficacy are discussed. The co-digestion of GM with SG in a 70:30 ratio yielded the highest biomethane of 239.3 ± 15.6 mL/gvs, and it was further up-scaled to a two-stage temperature-phased process supplemented with an anaerobic medium and fly ash (FA) in fabricated 2 L bioreactors. This system yielded the highest biomethane of 266.0 mL/gvs, having an anaerobic biodegradability of 67.3% in 70:30 GM:SG co-digestion supplemented with an anaerobic medium. The BMP of the FA-amended treatment may be lower because of its high Ca concentration of 205.74 ± 3.6. The liquid fraction of the effluents can be applied as N and P fertigation. The Ca concentration was found to be 24.3, 25.1, and 6.3 g/kg in GM and GM:SG (TS) and SG solid fractions, respectively, whereas K was found to be 26.6, 10.8, and 7.4 g/kg. The carbon to nitrogen ratio of solid fraction varied between 2.0 and 24.8 for return to the soils to enhance its quality. This study involving feedstock acquisition, characterization, and their anaerobic digestion optimization provides comprehensive information and may assist small farmers operating on-farm anaerobic digesters.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
